χ相和Laves相
χ相主要出现在含钼的不锈钢中,是具有体心立方结构的金属间化合物,每个晶胞内含有58个原子,代表的化学成分是Fe36Cr12Mo10。但是由于金属原子的相互置换,其化学组成可在一定的范围内变动。在奥氏体不锈钢中,该相的实际成分多为(FeNi)36Cr18Mo4。χ相主要在晶界,非共格孪晶界和晶内的位错处开始生成。晶内生成的χ相与奥氏体基体保持一定的位向关系。
Laves相(η相)是B2A型固定原子构成的金属间化合物。在含钼或铌的奥氏体不锈钢中形成的Laves相成分分别为Fe2Mo和Fe2Nb。该相具有六方结构,每个晶胞中含有12个原子。与碳化物,б相和χ相等相比,Laves相在钢中生成较慢,生成量也较少,且主要是晶内沉淀,与奥氏体基体也保持一定的位向关系。为形成该相,对B,A原子的相对大小有严格的要求:两者原子半径的比值不得大于1.225。
影响χ相和Laves相沉淀的因素是相似的。钢中合金元素有重要影响。钼、硅和钛会加速χ相和Laves相的形成,特别是钼的作用更为明显;镍、碳和氮含量的提高对这两种相的沉淀均有抑制作用。冷加工对这两种中间相的沉淀速度和沉淀量有不太强的促进效果。
奥氏体不锈钢中χ相和Laves相的沉淀,也像б相一样,导致耐蚀性下降及塑性、韧性的降低。但是由于这些相的沉淀温度与碳化物及б相的沉淀温度大体上相重合,因而在实际时效过程中,单独出现χ相或Laves相的情况是极少见的,这些相总是与碳化物、б相等相伴随而出现,且往往是次要相和后生相。所以,这些相的形成对不锈钢耐蚀性和力学性能的影响常常被作为主要相的碳化物或б相的作用所掩盖。
不锈钢装饰板近年来由于它所具有的独特性,应用越来越广。现在,国外在建筑物上大量采用不锈钢制品做装饰,不锈钢板已经风靡一时。不锈钢既具有金属特有的光泽和强度,又具有色彩纷呈、经久不变的颜色。不锈钢板它不仅保持了原色不锈钢的物理、化学、机械性能,而且比原色不锈钢具有更强的耐腐蚀性能。因此,当它从20世纪70年代问世以来,就在建材、化工、汽车、电子工业以及工艺美术等领域得到广泛应用。我国不锈304不锈钢瓦楞板生产厂家资源产生量也有所增加,2016年,全国不锈304不锈钢瓦楞板生产厂家资源总量为9291万吨,同比增加771万吨;钢企自产304不锈钢瓦楞板生产厂家4430万吨,占消耗总量的49%,同比增加240万吨;社会采购304不锈钢瓦楞板生产厂家4645万吨,占消耗总量的51%,同比增加555万吨;钢企304不锈钢瓦楞板生产厂家库存增加90万吨;进口304不锈钢瓦楞板生产厂家216万吨,同比减少17万吨。
1Cr28不锈钢系现有标准中铬含量 的铁素体不锈钢之一。它在硝酸中(包括低温浓硝中)具有良好耐蚀性,同时还耐次氯酸钠及磷酸的腐蚀。由于铬量高,此钢在硫化碱中也特别耐腐蚀。同时在高温下其抗氧化性和抗硫化性也很好。因此,此钢除用于耐腐蚀外,还可用于制造抗高温氧化和硫化的设备。
00Cr25Ni4Mo4Ti是以钛稳定化的超低碳,氮铁素体不锈钢,它在海水和含氯化物介质中具有极好的耐点蚀、耐缝隙腐蚀性能。它具有良好的强度、韧性和可焊性,即使在焊后于零下温度仍有一定韧性。它主要用于使用海水或其他含氯化物溶液的工厂、可制作洗涤器、冷凝器和热交换器等设备。
此钢种由于铬含量高且含~2%Mo,因而,在含氯化物的水溶液中耐孔蚀和应力腐蚀;在耐腐蚀性能方面除优于00Cr18Ni13Mo200Cr18Ni14Mo30Cr25Ni5Mo2N外,在NaOH和醋酸中,其耐蚀性与纯镍相当;在含NaClO3等氧化剂的高温NaOH中,不仅优于高纯Cr26Mo1,而且优于纯镍。与此同时,此钢还具有良好的韧性,加工成型性和可焊性。
不锈钢板表面本色白化处理加工工艺
不锈钢板表面光洁,有较高的塑性、韧性和机械强度,耐酸、碱性气体、溶液和其他介质的腐蚀。它是一种不容易生锈的合金钢,但不是 不生锈。广泛用于化工、食品、医药、造纸、石油、原子能等工业,以及建筑、厨具、餐具、车辆、家用电器各类零部件。
常用的不锈钢板表面处理加工工艺主要有表面本色白化处理,不锈钢板表面本色白化处理,是指在对不锈钢板加工的过程中,经卷板、轧边、焊接或经人工表面火烤加温处理, 不锈钢板面出现黑色氧化皮。该种坚硬的灰黑色氧化皮主要是NiCr2O4和NiF两种EO4成分,以前通常是使用 和硝酸等强腐蚀方法去除。但该方法本钱花费大,环境污染强,有害人体,且腐蚀性较大,所以正在被淘汰。
不锈钢板经过处理后,由于表面光滑,易於再研磨,使表面更加光亮,用途广泛,如餐具、建材等。