如何增强果壳活性炭的吸附性?
果壳活性炭是一种多孔碳化材料,孔隙非常发达,吸附性能特别好,强度远高于普通活性炭,而且容易再生,因此具有经济耐用的优点。对于一些特殊行业,果壳活性炭在使用前需要进行清洗,以免影响水质。这样可以将果壳活性炭中的黑色粉尘洗掉,避免影响水质的清洁度。
空气净化活性炭采用优质的果壳制成,从源头上解决了煤炭等材质的活性炭因灰分和重金属含量高而造成的二次污染。加工过程中不添加化学成分,对人体没有副作用,还能防止家具喷涂造成的褪色和潮湿二次污染。是自然生态下的物理吸附。
果壳活性炭表面酸性化合物越丰富,吸附极性化合物的能力越高。而碱性化合物较多的活性炭容易吸附极性较小或非极性物质。现在为了增强果壳活性炭的吸附能力,经常对其进行改性。活性炭的化学性质可以通过化学氧化、回收和负载来改变。通过增加酸碱基团的相对含量,可以选择不同极性的物质进行吸附,或者通过加入特定的外部杂原子或化合物来增强特定吸附剂的吸附。
活性炭应用废气处理工艺注意哪些问题
工艺温度
活性炭根据工艺参数的不同自身的着火点会有不同,但是正常情况下,活性炭用于废气治理吸附废气一般是常温状态下,如果温度过高,活性炭容易出现自燃,容易引起事故火灾,很危险。所以使用活性炭进行废气治理的时候一定要保证废气温度降温到常温状态下。
工艺含水量
活性炭具有极好的吸水能力,如果工艺内含水量过大,会导致活性炭优先吸附饱和水,进而不能充分处理废气,所以废气通入活性炭储罐之前,先对废气进行预处理干燥工艺,把含水量降低后再过活性炭储罐进行处理。
工艺气量
其实说到工艺的气量还是要跟活性炭床层厚度一块儿来说的,通过专业的计算活性炭床层厚度要与工艺气量匹配,如果气量太大会导致废气快速冲破活性炭床层,导致活性炭不能充分吸收废气,以至于该工段失效。
活性炭与木炭的区别?
一、活性炭与木炭的区别
1、加工工艺不同
竹炭只经过炭化阶段,而活性炭除炭化工艺外,还要经过活化、酸洗和烘干阶段。
2、微观结构千差万别
竹炭的孔隙直径要比活性炭大:竹炭内部大中小孔分导管、维管束,薄壁组织侧壁上的小孔,竹炭的孔隙以大孔为主,其直径以200nm(纳米单位,下同)左右为主;而活性炭以微孔占主导地位,孔隙直径大小分为三类:大孔(≥50nm),约占总孔容积的10~30%,微孔(≤2nm)约占总孔容积的60~90%,中孔又称过渡孔(2nm≤φ≤50nm),约占总孔容积的5~7%,孔隙平均直径约为1.5nm。有害气体分子直径(甲醛0.44nm、苯0.48nm、氨0.414nm、甲苯0.58nm、二甲苯0.60nm、甲烷0.324nm等)由此可见,竹炭对这些有害气体根本不具吸附净化功能,而活性炭的分子直径确是跟这些有害气体相融合的,其吸附性能和对有害气体的禁锢性能都较好。
往水中加入活性碳可以除去什么?
往水中加入活性碳可以除去水中的大颗粒杂质。
活性炭是一种用途极广的工业吸附剂,它是利用木炭、各种果壳和优质煤等作为原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。活性炭自1900年问世以来,其应用历程当中经历了两件大事,一是在20世纪20年代0次世界大战中被用于制造防毒面具;二是在20世纪40年代数以百计的自来水厂用活性炭脱臭。活性炭的吸附性源于其独特的分子构造,活性炭的内部有很多孔隙,每克活性炭的内部孔隙如果铺展开来可达到500~1700平方米,正是这种独特的内部构造,使得活性炭具有优异的吸附能力,活性炭的应用非常广泛,比如:糖的脱色,军用防毒面具,香烟过滤嘴,空气净化器,自来水厂水处理,饮用水净化,解毒,醒酒,治理放射元素污染,降低土壤中残留农药,调理土壤性能,治理室内甲醛,蔬菜保鲜,等等。