随着切削速度的增加,厚壁不锈钢板表面粗糙度值略减小,这种变化主要受机床动态特性的影响。当f=5.0μm/r,ap=6.00μm时,表面粗糙度的变化范围仅为2nm左右,因此说切削速度对厚壁不锈钢板表面粗糙度基本无影响。金刚石车削铜合金时也能够得到同样的结论。当切削速度为314m/min、进给量为5μm/r时,背吃刀量小于6μm时,对加工表面粗糙度基本无影响。 当切削速度为314m/min、背吃刀量为6μm时,可知小进给量可得到小的表面粗糙度值。但是由于小切削厚度的存在,实测的表面粗糙度值往往要比理论粗糙度值大几倍。厚壁不锈钢板产品优势走向厚壁不锈钢板具有以下突出的优势:卓越的力学性能、超群的耐磨损性能、卫生性能好、良好的耐温性能、保温性能较好、内壁光滑水阻小;外表美观、清洁、时尚,可回收再利用;有利于节约水资源;使用范围广;中地热能损耗。
厚钢板的钢种大体上和薄钢板相同。在品各方面,除了桥梁钢板、锅炉钢板、汽车制造钢板、压力容器钢板和多层高压容器钢板等品种纯属厚板外,有些品种的钢板如汽车大梁钢板(厚2.5~10毫米)、花纹钢板(厚2.5~8毫米)、不锈钢板、耐热钢板等品种是同薄板交叉的。
另,钢板还有材质一说,并不是所有的钢板都是一样的,材质不一样,其钢板所用到的地方,也不一样。
合金钢的性能编辑 播报
随着科学技术和工业的发展,对材料提出了更高的要求,如更高的强度,抗高温、高压、低温,耐腐蚀、磨损以及其它特殊物理、化学性能的要求,碳钢已不能完全满足要求。
钢板对奥氏体和铁素体存在范围的影响
扩大或缩小γ相区的元素均同样扩大或缩小Fe-Fe3C相图中的γ相区 且同样Ni或Mn的含量较多时 可使钢在室温下得到单相奥氏体组织(如1Cr18Ni9奥氏体不锈钢和ZGMn13高锰钢等), 而Cr、Ti、Si等超过一定含量时 可使钢在室温获得单相铁素体组织 (如1Cr17Ti高铬铁素体不锈钢等)。
对Fe-Fe3C相图临界点(S和E点)的影响
扩大γ相区的元素使Fe-Fe3C相图中的共析转变温度下降 缩小γ相区的元素则使其上升 并都使共析反应在一个温度范围内进行。几乎所有的合金元素都使共析点(S)和共晶点(E)的碳含量降低,即S点和E点左移 强碳化物形成元素的作用尤为强烈。
合金元素对钢热处理的影响
合金元素的加入会影响钢在热处理过程中的组织转变。
低碳钢板这类钢一般在热轧空冷状态下使用,不需要进行专门的热处理。使用状态下的显微组织一般为铁素体+索氏体。 用途主要用于制造汽车、拖拉机中的变速齿轮,内燃机上的凸轮轴、活塞销等机器零件。这类零件在工作中遭受强烈的摩擦磨损,同时又承受较大的交变载荷,特别是冲击载荷。2. 性能要求(1) 表面渗碳层硬度高,以保证优异的耐磨性和接触疲劳抗力,同时具有适当的塑性和韧性。2) 心部具有高的韧性和足够高的强度。心部韧性不足时,在冲击载荷或过载作用下容易断裂;强度不足时,则较脆的渗碳层易碎裂、剥落。 有良好的热处理工艺性能 在高的渗碳温度(900℃~950℃)下,奥氏体晶粒不易长大,并有良好的淬透性。 成分特点低碳:碳含量一般为0.10%~0.25%,使零件心部有足够的塑性和韧性。 加入提高淬透性的合金元素:常加入Cr、Ni、Mn、B等。 加入阻碍奥氏体晶粒长大的元素:主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。