<中高硫煤利用过程中产生大量的SOx排放到空气中,对环境造成严重的污染,这导致其利用困难。为实现中高硫煤清洁利用,基于软锰矿中二氧化锰的强氧化性,采用电场与软锰矿联合的技术促进高硫煤脱硫,重点考察不同反应条件对高硫煤脱硫率及软锰矿中锰的浸出率的影响,利用XRDFTIRXPS等分析测试方法,研究脱硫反应前后煤元素组成、硫含量等主要性质变化,探究其脱硫机理。结果表明,当软锰矿与高硫煤质量比为1/7煤浆质量浓度为0.05 g/mL反应时间5 h反应温度80℃初始硫酸浓度为1.2 mol/L电流密度为600 A/m~2时,与预处理煤相比,高硫煤脱硫率可达40.56%锰的浸出率为95.23%。65锰冷轧钢板45号冷轧钢板40cr钢板42crmo钢板耐磨钢板NM400本文对比了经相同轧制工艺和热处理工艺处理后的含Nb量0.045%和不含Nb元素耐磨钢板的组织演变规律和力学性能。耐磨钢板nm500实验结果表明添加了质量分数为0.045%的Nb元素钢板的抗拉强度和硬度低温冲击韧性都得到了一定程度的。从材料组织决定力学性能的角度分析钢板力学性能的主要是由于Nb元素的添加使钢板原始奥氏体晶粒细化导致的。 

 在常规低合金马氏体耐磨钢合金成分的基础上耐磨钢板锰13添加一定量的Ti元素通过冶炼连铸过程中形成大量米、亚米超硬Ti C陶瓷颗粒并结合控制轧制和控制热处理的工艺控制使其弥散均匀分布在板条马氏体基体上研发出一种新型连铸坯内生超硬Ti C陶瓷颗粒增强耐磨性超级耐磨钢板并在国内某钢厂进行了工业化生产;分析了连铸、耐磨钢板nm360热轧和离线热处理过程时实验钢中Ti C的演变规律和组织性能的变化并研究了其耐磨性能。结果表明新型钢板中由于较多Ti元素的添加在连铸凝固过程中形成仿晶界的米、亚米级的超硬Ti C粒子轧制和离线热处理过程中仿晶界的Ti C粒子在马氏体基体中弥散均匀分布;耐磨性测试表面在同等硬度的条件下新型耐磨钢板的耐磨性达65锰冷轧钢板45号冷轧钢板40cr钢板42crmo钢板耐磨钢板NM4

<研究钽铌矿物集合体在重力场和磁力场中的运动规律和分选行为。为钽铌精细化分选提供参考对调节我国钽铌资源的生产和供给具有重要意义。江西宜春钽铌矿工艺矿物学研究结果表明:矿石中钽铌矿物为钽铌锰矿和细晶石;Ta主要赋存在钽铌锰矿和细晶石中Nb主要赋在钽铌锰矿中;钽铌锰矿有两种嵌布形式呈粒间分布占53.57%呈包裹体分布占46.43%;钽铌锰矿嵌布粒度主要分布在0.043~0.3 mm细晶石嵌布粒度主要分布在0.02~0.20 mm细晶石比钽铌锰矿更易解离。论文创新性地研究了不同解离度的钽铌矿物在重力场/磁力场中的分选行为。发现在重力场/磁力场中进入不同重选/磁选产品的钽铌锰矿和细晶石存在解离度差异存在同解离度的钽铌锰矿和细晶石进入不同产品现象但其粒度存在明显差异。从钽铌矿物集合体角度来看在重力场/磁力场中未解离的钽铌45号钢板65锰冷轧钢板40cr钢板42crmo钢板新型耐磨钢板nm400Ti20和Ti60的含Ti量分别为0.2%和0.6%铸造后轧制成板热处理工艺为900℃淬火后200℃回火。研究结果表明:Ti20与Ti60的组织为板条马氏体。随着Ti含量的增加耐磨钢的原奥氏体晶粒度减小马氏体板条长度也减小。Ti与C在原奥氏体晶界处原位生成了尺寸为1~5μm的不规则TiC颗粒TiC颗粒起到了钉扎晶界、细化晶粒的作用。在石英砂和煤砂混合两种磨料的磨损实验中由于煤砂混合磨料主要成分煤粉的硬度远低于石英砂颗粒较为圆钝因此耐磨钢在石英砂磨料的犁削沟槽深度和宽度远大于煤砂混合磨料的磨损。无论在石英砂还是在煤砂混合的磨损条件下耐磨钢的磨损失重都随着Ti的增加而降低。加Ti的新型耐磨钢的耐磨性可达耐磨钢板nm450的1.3倍。耐磨钢的磨损机制主要为切削和犁沟。耐磨钢板nm500随着Ti含量的增加Ti元素集中区域较为光滑犁沟受到阻碍犁沟和切削槽深度变浅。原位生成的TiC颗粒起到了局部强化作用增强了周围区域的硬度和对磨料的阻碍作用提高了新型耐磨钢的耐磨料磨损性能45号钢板65锰冷轧钢板40cr钢板42crmo钢板新型耐磨钢板nm4

65锰冷轧钢板45号冷轧钢板40cr钢板耐磨钢板NM400 42crmo钢板代时期代表锰矿沉积成矿时代结合石榴石英岩和斜长角闪岩变质峰期年龄分析锰矿区在569-713Ma、435-489Ma间经历了两期强烈的变质作用改造;根据原岩恢复及构造环境分析石榴石英岩的原岩为火山-沉积岩系Mn O/Ti O2值为29.5-32.7表明其形成于海水沉积环境;斜长角闪岩原岩为基性火山岩来源于地幔源区并伴有壳幔混合特征。综合锰矿区矿床地质特征、岩-矿石岩相学、岩石地球化学、矿物化学、成矿流体特征、成矿年代学分析研究认为浪木日锰矿产于石榴石英岩中主要经历了沉积成矿作用、变质作用改造其成因类型属于典型的沉积-变质型锰矿。前国内生产的该级别耐磨钢冲击韧性普遍较低从而导致耐磨性能较差如何在保证国产NM500耐磨钢板nm360硬度、强度的前提下提高其冲击韧性进一步提高其使用寿命是目前国产NM500的主要研发方向。针对上述问题本论文工作在国产NM500化学成分的基础上添加不同含量的合金元素Nb系统研究了Nb含量变化对实验钢的析出相转变热力学、相变动力学、热处理工艺优化、强韧化机制及抗冲击磨粒磨损性能等方面的影响获得了具备高硬度、高强韧性及抗冲击磨损性能的新型低合金高强度耐磨钢化学成分及相应的热处理工艺。基于Thermo-calc热力学软件对含Nb 耐磨钢板nm400耐磨钢中析出相的类型、析出温度及析出量进行了计算结果表明:实验钢中随着Nb的含量由0.018%增加到0.078%富含Nb的MC型碳化物的析出温度显著提高由1150℃提高到1300℃同时析出量也明显增加这有利于通过细晶强化提高实验钢的冲击韧性。

  耐磨钢板锰13在低温回火条件下MC相、M7C3相、MCETA相和MC SHP相碳氮化物析出65锰冷轧钢板45号冷轧钢板40cr钢板耐磨钢板NM400 42crmo钢板

45号钢板65锰钢板40cr钢板42crmo钢板耐磨钢板NM500赞比亚某高铁锰矿中有用矿物为赤铁矿和各种锰矿物,铁品位为44.71%,锰品位为17.86%。为制定合适的选别工艺流程,通过光学显微镜、化学分析、X射线衍射等手段,对该矿石的化学成分、矿物组成及嵌布特征等方面进行的研究。研究结果表明:该矿石中主要的铁矿物为赤铁矿,含量为61.53%;主要的锰矿物为软锰矿、褐锰矿和硬锰矿,含量分别为18.62%4.82%和4.66%。 针对该矿石进行了预富集—磁化焙烧—磁选实验,终获得铁精矿铁品位平均值为67.97%;铁作业回收率平均值为94.67%。锰精矿锰品位平均值为49.85%;锰作业回收率平均值为88.24%。该研究结果对该矿石的分选工艺流程的制定具有一定的指导意义,同时也能为同类矿石提供借鉴。 磨内原采用厚度80mm放射状篦缝的铸造隔仓板(篦缝宽度为12.0mm)细磨仓段形研磨体堵塞篦缝严重直接影响磨机通风与过料能力导致频繁停磨清理篦缝。耐磨钢板mn13磨制烟煤煤粉细度控制指标:R80μm筛余≤5.0%磨机产量只有20t/h左右系统粉磨电耗38kWh/t。通过对系统的技术分析论证在磨内结构改造过程中采用了厚度12.0mm优质耐磨钢板机加工切割的新型组合式隔仓板篦缝宽度仍保持12.0mm不变。同时根据入磨原煤粒径、易磨性、水分及杂质含量对粗磨仓和细磨仓研磨体级配进行了调整。改造后经调试运行在煤粉细度控制指标不变的前提下磨机产量提高至26t/h增产6t/h增产幅度达30%。耐磨钢板nm400,系统粉磨电耗降至33kWh/t降低了5kWh/t节电幅度达13.16%入窑煤粉水分降低了1.50%。45号钢板65锰钢板40cr钢板42crmo钢板耐磨钢板N

点击查看众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司的【产品相册库】以及我们的【产品视频库】