想要一睹65锰钢板【700L汽车大梁板】工艺层层把关产品的风采吗?这个视频将用直接的方式展示产品的卓越性能,保证让您大饱眼福。


以下是:65锰钢板【700L汽车大梁板】工艺层层把关的图文介绍

众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司位于经济技术开发区大东钢管城,地理位置优越,交通便利,公司生产的【广西贺州NM500耐磨板】价格优惠,在同行业中拥有良好的信誉,公司经营的所有【广西贺州NM500耐磨板】全部符合标准。


日益增长的节能环保要求正不断推动着汽车轻量化进程,相较镁铝等轻质材料,65锰冷轧钢板汽车用钢面临着全流程绿色生产、高强高塑及优良成形性等多方面的挑战。

  以中锰钢和淬火&配分(Q&P)钢为典型代表的第三代先进高强钢(AHSS)在汽车轻量化材料中具有良好的竞争力65锰钢板。本论文主要从第三代AHSS的关键相——亚稳态残留奥氏体的设计出发,结合中锰钢的奥氏体逆转变退火(ART)工艺及Q&P工艺,设计并制备了具有高残留奥氏体含量的超高强含铝中锰钢,系统性探索残留奥氏体含量、形态、尺寸及周围基体相的分布与其相变诱导塑性(TRIP)效应的相互关系,实现低成本、简工序的超高强(抗拉强度>1300MPa,强塑积>35GPa·%)含铝中锰钢的组织调控及强韧化机制研究。低成本无合金元素的“C-Si-Mn-Al”系成分设计及短工序低能耗的制备流程为汽车轻量化提供了优质的选材。

 采用0.3C-1.5Si-4Mn,wt.%为基本合金体系,利用梯度铝含量(1\2\4,wt.%)调控中锰系钢的临界区温度及工艺窗口,实现高65mn锰冷轧钢板强度的基体组织设计,即“铁素体+残留奥氏体”的含铝中锰TRIP钢及“铁素体+回火马氏体+残留奥氏体”的含铝中锰淬火及回火配分(IQ-TP)钢。采用扫描电镜SEM、透射电镜TEM、电子背散射衍射EBSD、X射线衍射仪XRD等显组织形貌表征技术及相分析手段,结合原位变形技术系统性分析超高强含铝中锰钢的多元复合组织构成、应变协调性及强韧化机制;同时借助于电子探针EPMA分析宏观元素偏析行为,利用Thermo calc\DICTRA热力学动力学软件及原子探针层析术(APT)等深层次揭示观元素配分规律;合理调控临界区奥氏体化温度、加热速率、65mn锰冷轧钢板压下率等工艺参数,实现残留奥氏体及其他基本相的 化配置,改善或中锰系钢中的屈服平台及PLC塑性失稳现象。


传统高65mn锰钢板(Hadfield钢)在室温下能获得单相奥氏体,具有优良的加工硬化能力和抗冲击能力,因此广泛用作冲击载荷下的耐磨材料。然而较低的屈服强度和初始硬度,导致材料在低冲击载荷下不能完全发挥其耐磨性就发生塑性变形,降低了使用寿命。本文设计出一种轻质超高锰钢(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服强度、高初始硬度、良好冲击韧性等特点,适用于低冲击载荷下的磨损条件。通过研究时效处理后的相转变、压缩变形、冲击磨损分析了实验钢的强化机理和磨损机理。

  实验钢经1050℃保温1.5h水韧处理后获得单相奥氏体,65锰冷轧钢板时效后奥氏体基体会弥散析出纳米级别的κ’-碳化物,有助于屈服强度和初始硬度。在550℃时效2h综合力学性能65锰钢板佳,与仅水韧处理相比屈服强度提高107.4%,初始硬度提高28.7%,其抗拉强度为1041.7 MPa、屈服强度为1002.7 MPa、断后伸长率为17.6%、冲击韧性(V型缺口)为62 J/cm2和硬度为268.5 HB。随着时效温度升高(550℃~900℃)相转变的顺序为:κ’→纳米-κ’+β-Mn→亚米-κ’+β-Mn+α→纳米-κ’。其中四种类型的κ相析出涉及尺寸、形貌和分布被总结,包括晶内型:纳米-κ’(<50nm),亚米-κ’(>100nm)。

晶间型:κ*(~1μm)。以及片层状κ,存在α+κ群落中。在550℃时效下,纳米-κ’能促进β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃长时间时效下,由于α相的大量析出,其形成主要借助于γ→α反应。通过纳米压痕测试,获得了不同时效温度下基体与析出相的纳米硬度。计算得到理论层错能(SFE)为82.3 mJ/m2,由于平面滑移软化效应,变形模式以位错平面滑动为主,随着变形量的增加,主要的亚结构演变顺序为:平面位错队列→平面位错配置(偶极子和Lomer-Cottrell锁)→泰勒晶格→带。65锰冷轧钢板本研究利用压缩变形,观察到了高层错能下被抑制的形变孪晶以及一种多晶结构。通过分析理论临界孪生应力(σT),当外加应力大于σT,形变孪晶出现。多晶结构内部以位错缠结为主,通过波状滑移形成了位错胞。并提出了多效协同的强化机理:1)位错平面滑移导致滑移带细化和带形成,2)形变孪晶,3)多晶结构。这些形变亚结构的出现共同限制了位错运动,促进基体内位错密度的不均匀,从而增强了应变硬化。低冲击载荷(0.5 J)下,时效后实验65mn锰钢板耐磨性更好,磨损百分比更低(0.55%~0.57%)。



传统高锰钢在中低载荷工况下不具有优势,在其基础上通过降低或增加碳锰元素含量研发出中锰和超65锰钢板高锰钢,在一定程度上弥补了其应用中存在的不足。

  本文对比研究了Mn8、Mn15及Mn18三种锰钢的滑动和冲击磨料磨损性能,分析了磨损机理。同时模拟矿井淋水腐蚀环境,探讨了三种锰钢的电化学腐蚀性能,论文得到以下主要结论:酸性矿井淋水腐蚀条件下,三种锰钢表现出更负的腐蚀电位,酸性工况下耐腐蚀性能弱于碱性和中性腐蚀环境。酸、中、碱性矿井淋水腐蚀环境中,Mn8钢的开路电位正(65mn锰冷轧钢板),极化曲线外推拟合腐蚀电压 ,腐蚀电流小,且容抗弧半径小,其耐腐蚀性能优于Mn15和Mn18耐磨钢。滑动磨损实验表明,三种锰钢的摩擦系数均呈现先快速升高,后下降到一定的范围趋于平稳的变化趋势,低载平均摩擦系数高于高载。相同磨损工况条件下,Mn8均具有 磨损失重,其抗滑动磨料磨损性能优于Mn15和Mn18耐磨钢。

  三种耐磨钢磨损层硬度分布均呈现梯度变化特征,Mn8磨损亚表层(50mm处)65锰钢板硬度达到550HV,Mn15和Mn18分别为450HV和510HV,Mn8的加工硬化效果佳,Mn18则优于Mn15。三种耐磨钢干摩擦磨损机理主要表现为粘着磨损,伴有局部区域的疲劳剥落破坏,石英砂磨料磨损机理主要为磨粒磨损,表现形式为宽且深的犁沟和较大区域的疲劳剥落。冲击磨料磨损实验表明,随冲击功的增大,三种锰钢的加工硬化能力均提高,磨损失重也明显降低。1.5J冲击功时,Mn18的磨损失重低于Mn8和Mn15;3.5J冲击功时,Mn8具有 的磨损失重。Mn8和Mn18亚表层组织具有较高密度的孪晶,亚表层(50mm处)硬度分别达到50HRC和48HRC,其加工硬化效果明显优于Mn15,加工硬化层深度超过1.5mm。三种锰钢磨损形式主要表现为凿削磨损和不同程度疲劳剥落磨损。

65锰钢板Mn8、Mn15磨损层亚结构主要为位错、孪晶及马氏体,其耐磨强化机制为马氏体相变复合强化机制。Mn18磨损层亚结构出现大量位错、孪晶外,未发现马氏体相变,但出现Fe-Mn-C原子团偏聚区,其强化机制是通过位错、孪晶和Fe-Mn-C原子团强化




点击查看众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司的【产品相册库】以及我们的【产品视频库】