采用金相定量法对加热后耐磨复合板的奥氏体晶粒度进行测量,对耐磨复合板在不同加热温度和保温时间下的奥氏体晶粒长大规律进行了研究,并建立复合耐磨板加热时奥氏体晶粒长大演化模型。
通过对耐磨复合板在不同温度和应变速率下的热压缩实验获得真应力-应变曲线,其复合变质处理后的凝固组织明显细化,且组织分布均匀,晶粒粗化的主要原因是950℃时,V、Ti、Nb碳氮化物数量的大大减少。
耐磨复合板中的奥氏体晶粒尺寸增大,具有较好的抗晶粒粗化能力,在1050℃左右开始粗化。在高应变速率下,发生剧烈的软化后趋于稳定,并分析了相与相之间的反应界面。在 5 5 0~ 380℃盐浴等温处理时贝氏体组织转变,复合耐磨钢板中的Fe2B呈网状分布,而是呈断网状和块状分布。
在高温加热时奥氏体晶粒尺寸等值线图可定性和定量预测奥氏体晶粒长大规律,随保温时间的延长呈近似抛物线形式长大,当加热温度为1000℃,保温时间为60~90 min时,原奥氏体晶粒尺寸小于67μm,晶粒细小均匀,且微合金元素V充分溶解在奥氏体中。
等温处理后耐磨复合板的的组织为无碳贝氏体+马氏体,耐磨复合板中的奥氏体晶粒尺寸随加热温度升高呈指数关系长大,在高温加热时具有较好的抗晶粒粗化能力。
盾构机的刀具由于掘进磨损和承受掘进压力的作用,属于盾构机施工中的易损易耗件,所以应根据施工刀具的使用性能和磨损规律,结合刀具的受力情况和金相分析,总结刀具的失效原因,研制出盾构机的组成配件耐磨堆焊工艺,符合盾构机的耐磨复合板。
从盾构机刀具磨损情况来看,只需要对磨损的刀盘本体和刀具进行焊接修复和更换,即可保证盾构机正常进行下阶段的掘进施工。盾构修复的原则是保证修复后的刀具本体性能不低于原设计制造的水平,保证更换的刀具与出厂配备的刀具性能相匹配。
所以对盾构刀具本体外缘侧板环面采用埋弧堆焊的方式,首先填平一圈凹槽,然后堆焊整个侧板环面,在环面上形成一圈耐磨层,使得刀具本体直径恢复到出厂时的 6240 mm。
刀具外周边缘的倒角磨损采用加焊一圈耐磨钢板的方式对其进行恢复补强。钢圈面与刀盘本体面平齐 ,钢圈与刀具本体焊接采用二氧化碳保护焊,用埋弧堆焊把钢圈与刀具面板之间的缝隙和钢圈与刀具外缘侧板环面之间的凹槽填平。钢圈表面采用二氧化碳保护焊堆焊栅格状的耐磨堆焊层。
对于耐磨板来说,生产加工中温度的变化将直接影响整个板材性能,所以一直以来都在研究耐磨钢板等温处理的效果,结果发现不同加热温度下,耐磨板的连续冷却转变曲线、微观组织、物相及相似结构相也都随之发生了变化。
耐磨板等温处理的研究手段包括了很多优异的技术,如光学显微镜、透射电子显微镜、X射线衍射仪及电子背散射衍射技术等。随着退火温度的升高,耐磨板中铁素体的相比例会逐渐降低,升高的是贝氏体,而其中残余的奥氏体则会以椭圆状和细条状分布在铁素体晶界及晶内。
当加热温度由完全奥氏体化温度降低到两相区内较高温度时,耐磨板连续冷却转变曲线中铁素体转变区左移。这时只要通过790℃加热保温,可以得到含有铁素体、贝氏体和残留奥氏体的多相组织。
当保温温度进一步提高之后,工艺时间会直接影响到耐磨板中铁素体晶粒尺寸、铁素体量以及铁素体基体上的位错密度和沉淀析出量;随着贝氏体区保温时间的延长,耐磨钢板中残余奥氏体体积分数先增大后减少,残余奥氏体中碳含量增多。
当加热温度处在两相区范围内时,随着加热温度的降低,铁素体转变被推迟,奥氏体的含碳量也会有所不同。在相同的拉伸变形阶段,奥氏体转化率的增加速率不同,使得耐磨板连续冷却转变曲线右移。
另外,如果等温时间相同的话,等温温度越高,残余奥氏体中的碳含量越大,耐磨钢板中的铁素体、贝氏体晶界或者相界面1μm以上大颗粒奥氏体发生相变,相应的其性能也会有变化。
金海金属材料有限公司是一家专业从【河北20G高压锅炉管】的研发、生产、销售于一体的综合型企业。公司坐落于全国大型【河北20G高压锅炉管】生产基地--河北,位置优良,交通便利。公司【河北20G高压锅炉管】产品通过相关质量体系认证。
公司主要经营:【河北20G高压锅炉管】。经数年的建造努力,公司以优良服务为广大用户提供高性能、高品质的【河北20G高压锅炉管】,技术指标已达到或超过标准。现公司【河北20G高压锅炉管】产品销售全国各地,并出口海外市场,受到客户的认可。
耐磨钢板是指大面积磨损工况条件下使用的特种板材产品。目前,常用的耐磨钢板是在韧性、塑性较好的普通低碳钢或者低合金钢表面通过堆焊方法复合一定厚度的硬度较高、耐磨性优良的合金耐磨层而制成的板材产品。另外,还有铸造耐磨钢板和合金淬火耐磨钢板。
技术参数
硬度,HRC
耐磨层厚度≤4mm:HRC54-58;
耐磨层厚度>4mm:HRC56-62
外观参数
平整度:5mm/M
性能
良好的耐磨性
合金耐磨层的化学成分中碳含量达4~5%,铬含量高达25~30%,其金相组织中Cr7C3碳化物的体积分数达到50%以上,宏观硬度为HRC56~62,碳化铬的硬度为HV1400~1800。由于碳化物成于磨损方向相垂直分布,即使与同成分和硬度的铸造合金相比较,耐磨性能提高一倍以上。与几种典型的材料耐磨性对比如下:
(1)与低碳钢;20~25:1
(2)与铸态高铬铸铁;1.5~2.5:1
良好的耐冲击性
耐磨复合钢板的基板为低碳钢或低合金。不锈钢等韧性材料,体现双金属的优越性,耐磨层抵抗磨损介质的磨损,基板承受介质的载荷,因此有良好的耐冲击性。可以承受物料输送系统中承受高落差料斗等冲击和磨损。
较好的耐热性
合金耐磨层使用在≤600℃工况下使用,若在合金耐磨层中加入钒,钼等合金,可以承受≤800℃的高温磨损。
使用温度如下:
普通碳钢基板不高于380℃工况使用;
低合金耐热钢板(15CrMo,12Cr1MOV等)基板不高于540℃工况使用;
耐热不锈钢基板在不高于800℃工况使用。
好的耐腐蚀性
耐磨复合钢板的合金层中含有高百分比的金属铬,故具有一定防锈和耐腐蚀能力。用于落煤筒和漏斗等场合可以做到防止粘煤。
品种规格齐全
耐磨钢板规格全,品种多,已成商品系列化。耐磨合金层的厚度在3~20mm。复合钢板的厚度薄为6mm,厚度不限。标准耐磨钢板可提供1200或3800×12000mm,也可根据用户需求,按图纸尺寸定做加工。耐磨钢板现分为普通型、耐冲击型和高温型三种,定购高温耐磨和耐冲击型复合钢板要说明。
方便的加工性能
耐磨钢板可以切割,弯曲或卷曲、焊接和打孔,它可以加工成普通钢板可以加工的各种部件。切割好的耐磨钢板可以拼焊成各种工程结构件或零部件。
功能及特点
可焊接、耐磨性能好。