更新时间:2024-11-07 11:22:30 浏览次数:6 公司名称:聊城 众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司
产品参数 | |
---|---|
产品价格 | 电议 |
发货期限 | 电议 |
供货总量 | 电议 |
运费说明 | 电议 |
材质 | 65锰钢板 |
规格 | 1500*4000 |
品牌 | 河钢、敬业 |
切割方式 | 激光加工 |
状态 | 冷轧、热轧、淬火 |
随着预应变量的增加,退火铁素体中的位错密度明显65锰钢板增加,部分稳定性差的大尺寸RA首先发生相变而使得RA量逐渐降低,稳定性逐渐提高;抗拉强度与屈服强度逐渐提高,而断后伸长率则逐渐降低。热轧退火实验钢具有高的氢脆敏感性,随着预应变量的增大,氢脆敏感性逐渐增大,以相对伸长率损失表征的氢脆敏感性指数由未变形样的75.9%提高到15%预应变样的83.2%。充氢样SSRT宏观断口边部存在脆性平台,其断裂机制主要为准解理断裂,且有较多二次裂纹。
65mn冷轧钢板退火实验钢具有超细晶等轴状的退火铁素体+RA复相组织,在预应变过程中发生了TWIP效应和TRIP效应并出现不稳定的中间相ε-马氏体。与热轧退火实验钢类似,预应变能够显著地改变冷轧退火实验钢的力学性能。冷轧退火中锰钢在拉伸过程中出现吕德斯带以及PLC现象。当预应变量等于吕德斯带对应的应变时,即预应变量约为3%时,可以使吕德斯带消失,但预应变对PLC效应则几乎没有影响。这主要与随着预应变量增加,实验钢中位错密度增加、RA稳定性提高、形变诱导马氏体含量增加及形变孪晶的产生等因素有关。对于冷轧退火中锰钢实验料,随着预应变量的增加,充氢试样中的可扩散氢含量显著增加而氢扩散系数降低。与热轧退火实验钢类似,冷轧退火实验钢同样表现出显著的氢脆敏感性,并且随着预应变量的增加,氢脆敏感性逐渐增大。
65锰钢板不同预应变量未充氢样的SSRT断口呈现典型的韧窝韧性断裂特征,而充氢预应变样断口由近表面的脆性沿晶+准解理的混合断裂向心部的韧窝韧性断裂模式逐渐转变。
多年来,众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司始终坚持 广西河池NM500耐磨板产品质量的高标准和严要求,按照价实求生存、质量求发展的企业原则,重合同、守信用、讲诚信,结合先进的工艺技术和测试手段,求精求益求质量,赢得了许多的 广西河池NM500耐磨板回头客,深得各界的信赖和支持.
作为新型超低温用钢,65锰钢板高锰奥氏体钢因的力学性能和经济的造价而具有广范的应用前景。对高锰奥氏体钢的工程使用而言,保证焊缝金属的力学性能同样重要,因此,配套焊接材料的研发是关键。
本研究从合金元素对熔敷金属组织类型、机械稳定性和凝固裂纹敏感性的影响等方面考虑,设计了一种全奥氏体组织类型的高锰钢熔敷金属,其成分体系为C:0.2~0.5%、Mn:20.0~24.0%、Ni+Cr:4.0~8.0%,在此成分体系下熔敷金属具有良好的机械稳定性和低凝固裂纹敏感性。根据成分体系研制了高锰钢用实芯焊丝、金属粉型药芯焊丝和电焊条以及埋弧焊剂,并分别采用钨极氩弧焊、65mn锰冷轧钢板埋弧焊和手工电弧焊制备了高锰钢熔敷金属,采用常温拉伸、-196°C冲击和OM、EBSD、XRD等试验方法对熔敷金属的力学性能和观组织进行了详细的分析。力学性能分析结果显示,熔敷金属的屈服强度为323~495MPa,抗拉强度为600~732MPa,断后伸长率为36.0%~39.0%,-196°C平均冲击值为41~68J。熔敷金属观组织分析结果显示,组织类型为全奥氏体,呈胞状树枝晶结构,C、Mn、S等元素存在一定程度的显偏析,组织中存在大量Al2O3、SiO2、MnS类型的夹杂物。
熔敷金属良好的超低温冲击韧性主要缘于其全奥氏体组织类型,熔敷金属在冲击变形过程中发生马氏体转变(γ→ε-M→α’-M),65锰冷轧钢板也在一定程度上提高了低温冲击功,熔敷金属中直径>0.5μm的夹杂物密度较低,是保持低温韧性的另一个关键因素,而C元素在一次奥氏体相的偏析则会致使组织发生低温脆断。采用金属粉型药芯焊丝和电焊条制备了高锰低温钢焊接接头,接头中焊缝金属的屈服强度为468~489MPa,抗拉强度为700~736MPa,断后伸长率分别为37.0%~37.5%,-196°C平均冲击值为68~83J,焊缝金属具有良好的力学性能,焊接材料与高锰低温钢匹配性较好。
2)选取机械性能 的两种材料65mn锰冷轧钢板0Si退火10min试样、0.6Si退火30min试样),在1×10-4/s~1×10-1/s的应变速率下进行实验,机械性能和断裂行为的研究表明:随着应变速率的增加,由于TRIP效应被抑制,0Si和0.6Si的抗拉强度和延伸率均大幅度降低,且0.6Si的延伸率降低的更快,比如:0Si的延伸率由44%下降至33%,0.6Si的延伸率由55%下降至35%。随着应变速率的增加,0Si的断面收缩率基本不变(约为70%),0.6Si的断面收缩率大约由51%增加至72%。应变速率并未影响0Si和0.6Si的断裂行为。然而,随着应变速率的降低,表面裂纹的形核数量增加,扩展速率降低;断口的韧窝尺寸降低,二次裂纹数量和尺寸增加。
(3)选取四种材料(0Si和0.6Si均退火3min和30min试样),65锰钢板系统的研究了成分和退火时间对氢脆性能和氢致断裂行为的影响。关于退火时间:随着退火时间的增加,0Si和0.6Si的氢脆敏感性均呈现上升趋势,比如:当退火3min时,0Si/0.6Si的塑性损失和强度损失分别为13.5%/46.7%和0.0%/1.7%;当退火30min时,0Si/0.6Si的塑性损失和强度损失分别为79.2%/76.5%和26.8%/6.3%。关于成分:退火3min时,0Si的氢脆敏感性较低;退火30min时,0.6Si的氢脆敏感性较低。相比空拉断裂行为而言,氢原子促进裂纹更容易形核与扩展,进而导致材料提前断裂。对于0Si:裂纹形核与氢原子无关,但是,氢致裂纹呈沿晶和穿晶扩展。对于0.6Si:裂纹形核与扩展与氢原子无关,断口则由细小的韧窝变为脆性准解理。
5)在不劣化市售马氏体材料(S0)65mn锰冷轧钢板机械性能的基础上,二次回火不同时间(30min,60min,120min),试样分别记为 S30、S60 和 S120,发现,二次回火工艺可以有效地提高其抗氢脆性能,如下:S0和S60的塑性损失和强度损失分别为100.0%/79.3%和35.9%/1.7%。二次回火试样抗氢脆性能高的原因如下:1、不可逆氢陷阱MoyCx析出物的长大;2、渗碳体/基体界面的增加;渗碳体/基体应变界面具有较高的陷阱能;3、位错密度的降低。