00Cr18Ni14Mo2Cu2系在00Cr17Ni14Mo2基础上加入约2%Cu而发展起来的, 在稀硫酸、磷酸等还原性酸中以及在醋酸、甲酸等有机酸中,其耐蚀性优于00Cr17NI14Mo2和00Cr19Ni13Mo3。此钢系耐稀硫酸腐蚀的较好材料,在室温、中等浓度的硫酸中耐蚀性亦佳。它是制造化工、化肥、化纤设备的重要耐蚀材料,可用作焊接结构件和管道、容器等。
此钢种与00Cr18Ni14Mo2Cu2钢相比,由于碳含量高且加入碳化物形成元素Ti,在具有较高强度的同时,其耐晶间腐蚀性能良好。加之此钢镍含量高,组织更加稳定,不存在铁素体,热塑性好,因而较00Cr18Ni14Mo2Cu2更适于生产管材。此钢的耐蚀性在硫酸等还原性介质中要较00Cr18Ni14Mo2Cu2钢为优。由于它在磷酸、中温中等浓度硫酸中耐蚀性优良,故多用于制造酸洗、合成橡胶、人造丝浸槽等与硫酸相接触的设备。
0Cr18Mn13Ni3N钢对不同大气环境中的耐锈性良好,只是在海洋大气中会有轻微的表面腐蚀。在弱酸和点腐蚀环境中耐蚀性与0Cr19Ni9钢相当,但在强腐蚀性条件下比0Cr19Ni9钢稍差。以低应力水平下耐应力腐蚀破裂性能优于0Cr19Ni9,在高应力水平下与0Cr19Ni9钢相同。对于硝酸法(65%HNO3,沸腾)和硫酸铜法晶间腐蚀检验,非焊及焊接试样均能通过。
工艺性能
0Cr18Mn13Ni3N钢的工艺性能良好,用生产常规奥氏体不锈钢的通用装备和技术可容易地生产出各种热加工材和冷加工材。与常用的铬镍奥氏体不锈钢相比,由于强度较高,变形抗力稍大。热加工的温度范围是1150-900℃,正确的热处理制度为1010-1100℃加热后水冷。
高纯Cr30Mo2钢在各种介质中的耐腐蚀性能见表3-53和表3-54。由此可以看出,该钢在许多介质中优于含钼的Cr-Ni不锈钢00Cr18Ni13Mo2和双相钢0Cr25Ni5Mo2。在含NaCl,NaClO3的NaOH中,耐蚀性还优于纯镍(见图3-95)。为此,高纯Cr30Mo2钢在隔膜法固碱降膜工艺上获得了应用。需要指出,在280℃,浓度为60%的NaOH中,只有当NaClO3浓度超过100ppm时,Cr30Mo2钢的腐蚀率才能从30-36mm/a降低到1-1.5mm/a的水平。高纯Cr30Mo2钢的耐H2SO4腐蚀性能见图3-96。
Cr30Mo2钢在氯化物溶液中,耐应力腐蚀和孔蚀以及缝隙腐蚀的性能好。例如,在42%沸腾MgCl2中,即使承受高应力也不产生破裂(图3-97)。在5%+FeCl3+0.05mol/1 HCl水溶液中,高纯Cr30Mo2耐孔蚀,缝隙腐蚀的性能优于含2% Mo的Cr-Ni奥氏体和双相不锈钢.
不锈钢的发明是世界冶金史上的一项重大成就。20世纪初,吉耶(L.B.Guillet)于1904年—1906年和波特万(A.M.Portevin)于1909—1911年在法国;吉森(W.Giesen)于1907—1909年在英国分别发现了Fe—Cr和Fe—Cr-Ni合金的耐腐蚀性能。蒙纳尔茨(P.Monnartz)于1908-1911年在德国提出了不锈性和钝化理论的许多观点。工业用不锈钢的发明者有:布里尔利(H.Brearly)1912—1913年在英国开发了含Cr12%—13%的马氏体不锈钢;丹齐曾(C.Dantsizen)1911—1914年在美国开发了含Cr14%—16%,C 0.07% —0.15%的铁素体不锈钢;毛雷尔(E.Maurer)和施特劳斯(B.Strauss)1912—1914年在德国开发了含C<1%,Cr 15%—40%,Ni<20%的奥氏体不锈钢。1929年,施特劳斯(B.Strauss)取得了低碳18-8(Cr-18%,Ni-8%)不锈钢的 权。为了解决18-8钢的敏化态晶间腐蚀,1931年德国的霍德鲁特(E.Houdreuot)发明了含Ti的18-8不锈钢(相当于现在的1Cr18Ni9Ti或AISI 321)。几乎与此同时,在法国的Unieux实验室发现了奥氏体不锈钢中含有铁素体时,钢的耐晶间腐蚀性能会得到明显改善,从而开发了γ+α双相不锈钢。1946年,美国的史密斯埃塔尔(R.Smithetal)研制了马氏体沉淀硬化型不锈钢17-4PH;随后既具有高强度又可进行冷加工成形的半奥氏体沉淀硬化不锈钢17-7PH和PH15-7Mo等相继问世。至少,不锈钢家族中的主要钢类,即马氏体、铁素体、奥氏体、α+γ双相以及沉淀硬化型等不锈钢*便基本齐全了,且一直延续到现在。